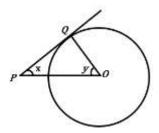


COMMON PRE-BOARD EXAMINATION 2024-25

Subject: MATHEMATICS (BASIC) -241


Time: 3 hours Max. Marks: 80 Date: 04-12-2024

General Instructions:

- 1. This Question Paper has 5 Sections A E.
- 2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

				SECTION	\mathbf{A}				
		Se	ection A	A consists of 20 qu	estions	s of 1 mark each.			
Q.1.	If p is a	prime number,	, then L	CM of p , p^2 , p^3 is					1
	(A)	p^2	(B)	p	(C)	p^3	(D)	p^5	
Q.2.	If $x = a$, $y = b$ is the solution of the pair of equations $x - y = 2$ and $x + y = 4$, then the respective values of a and b are						1, then the	1	
	(A)	-1, -3	(B)	3,5	(C)	5, 3	(D)	3, 1	
Q.3.	The quad	dratic equation	$2x^{2}$ –	$\sqrt{5} x + 1 = 0 \text{ has}$					1
	(A) tw	o distinct real roots	(B)	two equal real roots	(C)	no real roots	(D)	more than two real roots	
Q.4.	-	int P(k, 0) divien the value of		line segment joinin	g the po	oints $A(2, -2)$ and	B(-7,	4) in the ratio	1
	(A)	1	(B)	2	(C)	-2	(D)	_1	

In the given figure, PQ is a tangent to the circle with centre O. If $\angle OPQ = x$, $\angle POQ = y$, then x + yQ.5.

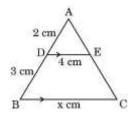
(A) 90°

(B)

(C)

150°

(D)


60°

1

1

1

In the given figure, DE \parallel BC, then the value of x is **Q.6.**

(A)

6

(B)

12.5

120°

(C)

8

(D)

10

Q.7. In \triangle ABC, right angled at C, if tan A = $\frac{8}{7}$, then the value of sin B is

(A)

(B) $\frac{8}{7}$ (C) $\frac{7}{\sqrt{113}}$

(D)

The sides of two similar triangles are in the ratio 4:7. The ratio of their perimeters is **Q.8.**

(A)

4:7

(B)

12:21

(C)

16:49

(D)

7:4

Q.9. The largest number that divides 245 and 1029, leaving remainder 5 in each case is

1

(A)

15

(B)

(C)

5

(D)

16

The common difference of the A.P. $\frac{1}{p}$, $\frac{1-p}{p}$, $\frac{1-2p}{p}$, is Q.10.

1

(A)

 $(\mathbf{B}) \qquad \frac{1}{p} \qquad (\mathbf{C}) \qquad -1$

(D)

In \triangle ABC and \triangle DEF, $\frac{AB}{DE} = \frac{BC}{FD}$. Which of the following makes the two triangles similar?

1

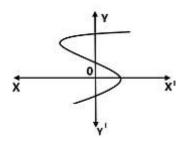
(A)

 $\angle A = \angle D$

(B)

 $\angle B = \angle D$

(C)


 $\angle B = \angle E$

(D)

 $\angle A = \angle F$

- Q.12. Two concentric circles have radii 13 cm and 12 cm, then the length of the chord of the larger circle 1 which touches the smaller circle is
 - (A) 10 cm (B) 25 cm (C) 26 cm (D) 24 cm
- **Q.13.** If $\sin \theta = \frac{a}{b}$, then $\sec \theta$ is equal to $(0^{\circ} \le \theta \le 90^{\circ})$
 - (A) $\frac{a}{\sqrt{b^2 a^2}}$ (B) $\frac{b}{\sqrt{b^2 a^2}}$ (C) $\frac{\sqrt{b^2 a^2}}{b}$ (D) $\frac{\sqrt{b^2 a^2}}{a}$
- Q.14. A rectangular sheet of paper 40 cm × 22 cm, is rolled to form a hollow cylinder of height 40 cm.

 1 The radius of the cylinder (in cm) is
 - (A) 5 (B) 7 (C) $\frac{80}{7}$ (D) 3.5
- Q.15. Two coins are tossed together. The probability of getting at least one tail is
 - (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) 1
- **Q.16.** The discriminant of the quadratic equation $(x + 5)^2 = 2(5x 3)$ is
 - (A) 5 (B) -124 (C) -5 (D) 124
- Q.17. The median of first seven prime numbers is
 - (**A**) 7 (**B**) 5 (**C**) 11 (**D**) 13
- Q.18. In the graph of x = p(y), for some polynomial p(y), then the number of zeroes is/are

(A) 3 (B) 1 (C) 0 (D) 2

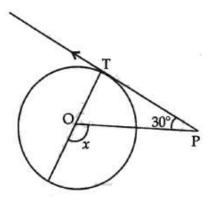
DIRECTION: In question numbers 19 and 20, a statement of **Assertion (A)** is followed by a statement of **Reason (R)**.

Choose the correct option.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.
- Q.19. Statement A (Assertion): $.\sqrt{7}$ is an irrational number.

 Statement R (Reason): A square root of a prime number is always an irrational number.
- **Q.20.** Statement A (Assertion): Sum of first hundred even natural numbers divisible by 5 is 500. 1 Statement R (Reason): Sum of first 'n' terms of an AP is given by $S_n = \frac{n}{2}(a+l)$, where l is the last term.

SECTION B


Section B consists of 5 questions of 2 marks each

Q.21. (a) Show that A(1, 2), B(5, 4), C(3, 8) and D(1, 6) are vertices of a parallelogram ABCD.

2

(OR)

- (b) Show that the points A(3, 0), B(6, 4) and C(1, 3) are vertices of a right-angled triangle.
- Q.22. In the below given figure, PT is a tangent at T to the circle with centre O. If \angle TPO = 30°, find the value of x.

(a) Find the sum of the first 15 terms of the A.P.: $\frac{1}{15}$, $\frac{1}{12}$, $\frac{1}{10}$, Q.23.

(OR)

(b) Find a and b so that the numbers a, 7, b, 23 are in AP.

2

2

Q.24. Evaluate: $5 \csc^2 45^\circ - 3 \sin^2 90^\circ + 5 \cos 0^\circ$.

2

Q.25. Find the mode of the following frequency distribution:

2

Class	0 - 20	20 - 40	40 - 60	60 - 80	80 - 100
Frequency	8	7	12	5	3

SECTION C

Section C consists of 6 questions of 3 marks each

If $\sqrt{2}$ is given as an irrational number, then prove that $(5-2\sqrt{2})$ is an irrational number. Q.26.

3

(a) The line segment AB joining the points A(2,1) and B(5,-8) is trisected at the points P and Q Q.27. such that P is nearer to A. Also, if P lies on the line given by 2x - y + k = 0, find the value of k.

3

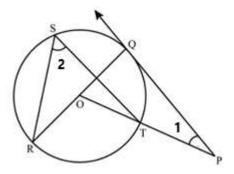
3

(OR) (b) The centre of a circle is (2a - 1, 7) and it passes through the point (-3, -1). If the diameter

of the circle is 20 units, then find the value of a.

Q.28. Prove that: $(1 + \tan A - \sec A)(1 + \tan A + \sec A) = 2 \tan A$.

3


Q.29. (a) Prove that the parallelogram circumscribing a circle is a rhombus.

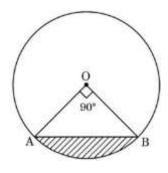
3

(OR)

(b) In the given figure, PQ is a tangent from an external point P to a circle with centre O and OP cuts the circle at T and QOR is a diameter. If $\angle POR = 130^{\circ}$ and S is a point on the circle, find $\angle 1$ and $\angle 2$.

3

Q.30. Find the mean of the following da
--


Classes	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
Frequency	5	10	18	30	20	12	5

Q.31. Solve
$$2x + 3y = 11$$
 and $2x - 4y = -24$ and hence find the value of 'm' for which $y = mx + 3$.

SECTION D

Section D consists of 4 questions of 5 marks each

Q.32. A craft paper is cut in the shape of a circle for an activity by the student as seen in the given figure.
AB is a chord of a circle of radius 7 cm and centred at O. Find the area of the shaded region if
∠ AOB = 90°. Also, find the length of the corresponding minor arc.

- **Q.33.** If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then prove that the other two sides are divided in the same ratio.
- **Q.34.** (a) A two-digit number is such that product of its digits is 18. When 63 is subtracted from the number, the digits interchange their places. Find the number.

(OR)

- (b) The sum of the ages of a father and his son is 45 years. Five years ago, the product of their ages (in years) was 124. Determine their present age.
- Q.35. (a) A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank as 60° . When he moves 30 m away from the bank, he finds the angle of elevation of the top of the tree to be 30° . Find the height of the tree and width of the river. [Take $\sqrt{3} = 1.732$].

(OR)

(b) From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

3

5

5

5

5

5

5

SECTION E

Case study- based questions are compulsory

Q.36. Case study-based question 1:

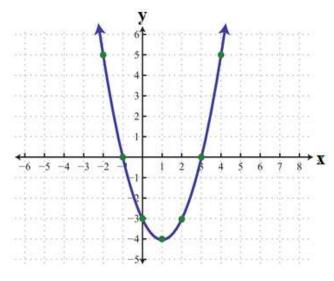
Some students were asked to list their favourite colour. The measure of each colour is shown by the central angle of a pie chart as seen beside: Yellow White 120°
Green 60° 8ed 60°
Blue

Study the pie chart and answer the following questions:

- (i) If a student is chosen at random, then find the probability of his/her favourite colour being white?
- (ii) What is the probability of his/her favourite colour being blue or green?
- (iii) (a) If 15 students liked the colour yellow, how many students participated in the survey?

(OR)

(b) What is the probability of the favourite colour being red or blue?


2

1

2

Q.37. Case study-based question 2:

ABC construction company got the contract of making speed humps on roads. Speed humps are parabolic in shape and prevents over speeding, minimise accidents and gives a chance for pedestrians to cross the road. The mathematical representation of a speed hump is shown in the given graph.

Now, answer the following questions based on the above given information.

(i) Find the zeroes of the polynomial whose graph is given.

1

- (ii) Find the product of the zeroes of the polynomial which represents the parabola.
- 1

(iii) (a) What will be the expression of the given polynomial p(x)?

2

(OR)

(b) Find a quadratic polynomial, if its sum of the roots is -2 and product of the roots is $\frac{1}{3}$.

2

Case study-based question 3: Q.38.

Singing bowls (hemispherical in shape) are commonly used in sound healing practices. Mallet (cylindrical in shape) is used to strike the bowl in a sequence to produce sound and vibration. One such bowl is shown here whose dimensions are: Hemispherical bowl has outer radius 6 cm and inner radius 5 cm. Mallet has height of 10 cm and radius 2 cm.

Now, answer the following questions.

(i) What is the volume of the material used in making the mallet?

1

(ii) The bowl is to be polished from inside. Find the inner surface area of the bowl.

1

(iii) (a) Find the volume of metal used to make the bowl. (Use $\pi = 3.14$)

2

(OR)

(b) Find total surface area of the mallet. (Use $\pi = 3.14$)

2